A male patient in his mid-50s often fell sound asleep as soon as he sat down in a reclining chair in a biofeedback treatment room. He was proud that this "relaxation skill" had become automatic and was disappointed when I gently woke him up to start the training session. I challenged his implicit model of relaxation and explained that relaxation is not sleep, but a state of calm alertness.

Relaxation may be one of the least understood concepts in applied psychophysiology due to therapist and patient misconceptions about it. Four of the most important myths are:

Relaxation is like being deeply asleep.

All relaxation procedures produce the same relaxed state.

Autogenic exercises warm hands and progressive relaxation lowers EMG levels

You must make yourself relax.



This unit discusses Relaxation methods: Procedures, indications and contraindications (VII-B) and The effects of exercise on mood, physiological functioning, and presenting symptoms (VII-F).

Students completing this unit will be able to discuss:

  1. Relaxation methods: Procedures, indications and contraindications
    A. Progressive muscle relaxation
    B. Autogenic training
    C. Guided imagery
    D. Hypnosis
    E. Meditation
  2. The effects of exercise on mood, physiological functioning, and presenting symptoms




Relaxation is like being deeply asleep

Relaxation training should teach patients to achieve a state of calm alertness; not a coma. Relaxation should improve your performance when driving, presenting a talk, or hitting a golf ball, instead of impairing it.


All relaxation procedures produce the same relaxed state

When we administer a psychophysiological profile to a new patient, we often see some systems within normal limits and others one or more standard deviations outside clinical norms. Each patient has a personalized response stereotypy (unique psychophysiological response pattern): blood pressure and heart rate might be elevated while skin conductance level and upper trapezius muscle contraction are normal.

Mild and moderate stressors do not produce unidimensional physiological changes. Stressors will trigger changes in some systems but not others: blood pressure and heart rate may rise while skin conductance and upper trapezius EMG do not change. This illustrates the concept of response fractionation body systems can react independently to stressors. The stress response is multidimensional.

If your patient's response to stressors is unique and multidimensional, then his or her response to a relaxation procedure will also be unique and multidimensional. For example, a progressive relaxation exercise (focus on the tension in your forearm and then let it go) may lower blood pressure and heart rate, and not change skin conductance and upper trapezius EMG. In contrast, a visualization exercise ("imagine yourself lying on warm sand") may lower state anxiety and not change blood pressure, heart rate, skin conductance, or upper trapezius EMG. Relaxation procedures produce complex changes in each patient; there is no generic relaxed state.


Autogenic training warms hands and progressive relaxation lowers EMG levels

Therapists often administer relaxation procedures to produce specific physiological changes--autogenic exercises to warm hands and feet and progressive relaxation to lower EMG levels. There are two problems with this approach.

First, Freedman (1994) has repeatedly shown that a taped autogenic procedure neither raises temperature nor reduces sympathetic activity. Second, research shows that neither procedure is superior to the other in raising hand temperature or lowering EMG levels (Lichstein, 1988).

What should therapists do if relaxation procedures don't produce predictable physiological changes in most patients? They should use an empirical approach: present several procedures to a client, determine which procedure he or she prefers, and monitor subjective cognitive and physiological changes. The therapist should encourage patients to practice a procedure they like that produces desired changes--they are more likely to regularly practice their favorite procedure.


You must make yourself relax

A patient's strategy during relaxation practice can result in clinical success or failure. When we introduce a relaxation exercise to lower a patient's blood pressure, it should not be practiced in a way that triggers a fight-or-flight response, raising blood pressure. While active volition (instructing muscles to contract) can play a valuable role in procedures like Progressive Relaxation, using excessive effort can backfire. Shaffer et al. (2002) reported that use of high effort in autogenic and progressive relaxation procedures caused unwanted physiological changes.

Therapists should remind their patients that relaxation is a state of calm alertness and that you cannot be calm when you force yourself to relax. Instead, therapists should encourage their patients to use passive volition, where they visualize a desired change and then allow their bodies to make the change at their own pace.



Relaxation training combines deep relaxation and abbreviated relaxation procedures. We can describe relaxation procedures in terms of the degree of subjective and physiological change, degree of sensory restriction, and length of practice.

Deep relaxation procedures like Autogenic Training, Progressive Relaxation, visualization, transcendental Meditation (TM), clinically standardized meditation (CSM), and hypnosis:

Abbreviated relaxation procedures like the Quieting Response:

Deep relaxation exercises help patients experience profound relaxation, creating a template of how relaxation subjectively feels. This template guides relaxation practice and enables patients to first, consciously, and later, unconsciously, identify when they are distressed. When relaxation becomes automatic, patients may unconsciously detect their distress and unconsciously relax themselves. Deep relaxation exercises may help counter cumulative changes produced by distress, and may reset body setpoints for blood pressure, muscle contraction, and stress hormone levels. Finally, the belief that relaxation practice has been successful may increase your patients' perception of self-efficacy (personal effectiveness) and result in an internal shift in their locus of control (perceived cause of personal outcomes like health and illness).

To summarize, deep relaxation exercises may:

Abbreviated relaxation procedures help patients generalize relaxation skills to the settings outside of the clinic where they spend the most time (167 hours a week) and experience the most distress (commuting, home, and the workplace). Generalization from clinic to a patient's environment, called transfer of training, is a critical hurdle in both psychotherapy and relaxation training.

Abbreviated relaxation procedures help patients transfer relaxation skills to their environment by making relaxation automatic. A stress response is a habit that has become automatic after months to decades of practice. A relaxation skill is also a habit--but so new that its practice initially requires conscious supervision. The more patients practice a relaxation skill, the stronger this habit becomes. After about six months, patients may automatically replace a fight-or-flight response with relaxation when they encounter stressors (traffic slowdown). Abbreviated relaxation exercises may complement deep relaxation exercises in countering cumulative changes produced by distress. These exercises may also help reset body setpoints, increase perceived self-efficacy, and internally shift your clients' locus of control.

To summarize, abbreviated relaxation exercises may:



There is a remarkable synergy between biofeedback and relaxation training. Biofeedback helps patients refine their relaxation skills by guiding their practice with knowledge of results. Feedback immediately shows patients when relaxation strategies succeed or fail. Biofeedback also provides patients with objective, quantifiable evidence of their performance. Patients often trust physiological measurements more than their own perception of improvement. Measurements in microvolts seem more real to them. This information can reassure patients that they have made progress, increase their motivation to practice, and help them continuously refine their relaxation skills.

Relaxation training, in turn, helps patients transfer self-regulation skills learned through biofeedback to their environment. Forty minutes a week of biofeedback training cannot change patient stress responses by itself. These 40 minutes must counter the stressors encountered during about 10,000 waking minutes each week. Biofeedback training does not have a chance of changing patients' stress responses without weekly relaxation practice. Biofeedback research has consistently shown that the best clinical outcomes require regular--but not daily--relaxation practice.



Johannes Schultz (1884-1970), a German neurologist, developed autogenic training during the 1920s based on clinical hypnosis research (Schaefgen, 1984). Schultz described clinical applications of autogenic training to the Medical Society in 1926 and published his first book, Das autogene training, in 1932.




       


Wolfgang Luthe
, a German-born psychiatrist who was Schultz's student and collaborator, introduced autogenic training to English-speaking professionals. Luthe translated Das autogene training into English in 1959 and co-authored a six-volume English series on autogenic training from 1969 to 1973 (Suter, 1986).

Schultz observed that both deep relaxation and falling asleep are associated with sensations of limb heaviness and warmth. Autogenic training assumes that this process is bidirectional: passively imagining heaviness and warmth can produce a deeply-relaxed state. Autogenic training requires passive concentration, free of effort or goal-direction. So does the perception of three-dimensional random dot stereograms where you allow your eyes to defocus until you are "seeing double" so that an image can "jump out" at you.






From Luthe's perspective, passive concentration reduces cortical interference with maintenance of homeostasis by subcortical structures. The transition to a passive, presleep, hypnagogic autogenic state is called autogenic shift. The challenge is to maintain the autogenic state without falling asleep. The patient walks a tightrope between active attention and sleep (Luthe, 1979).



Autogenic training is a sequence of three procedures: six standard exercises, autogenic modification, and autogenic meditation. Therapists often use complete or abbreviated versions of the standard exercises and dispense with autogenic modification and autogenic meditation. Training can be individual or in a group setting. The environment should be comfortable with minimal distraction. The patient should sit or lie comfortably with adequate neck and leg support. The ideal position is lying supine on a couch since this minimizes muscle tension and promotes drowsiness. The room should be slightly darkened (Linden, 1990).



The six standard exercises focus on physiological changes. The therapist prepares the patient for the first exercise by reviewing its rationale, the learning process, common experiences, and the mechanics of autogenic training. Each standard exercise consists of a relaxation theme ("heaviness") the patient subvocally repeats while visualizing that he or she is lying or sitting in a comfortable environment like a beach or a meadow (Schultz & Luthe, 1969). A passive attitude is the most crucial element. A relaxed position, conducive environment, and visualization are also important.

The six relaxation themes include:

  1. Heaviness
  2. Warmth
  3. Cardiac regulation
  4. Respiration
  5. Abdominal warmth
  6. Forehead cooling

The heaviness and warmth standard exercises (1-2) are each divided into seven parts:

  1. Right arm
  2. Left arm
  3. Both arms
  4. Right leg
  5. Left leg
  6. Both legs
  7. Arms and legs

The remaining standard exercises (3-6) consist of only one relaxation component each. In total, the six standard exercises consist of 18 components. The European practice of 1-2 sessions per component requires almost 6 months to complete these exercises (Lichstein, 1988). American clinicians sharply abbreviate autogenic exercises (Pikoff, 1984), often providing less than one hour of training time.

Each training session starts with the formula, "I am at peace." Initial practice may be as brief as 30 seconds per relaxation component (for a total of 9 minutes for one standard exercise). The patient may extend practice of a component to over 30 minutes as his or her skill increases. Standard exercises end with taking back procedures: vigorously flexing the arms, deep breathing, and opening the eyes: "Arms firm, breathe deeply, open eyes" (Linden, 1990).



Autogenic modification procedures are used when a symptom like low back pain does not respond to practice of the six standard exercises. Following a patient's mastery of the standard exercises, a therapist may introduce organ-specific formulae or intentional formulae. Organ-specific formulae modify standard exercise themes (heaviness, warmth, calm and regular heartbeat, and coolness) to treat patient symptoms ("My back is warm"). Intentional formulae, which may be reinforcing or neutralizing, are used to increase or decrease behaviors. Reinforcing formulae motivate action ("I am energetic and will practice harder"). Neutralizing formulae reduce self-defeating statements ("My job frustration does not matter").



Seven autogenic meditation exercises are used to improve visual imagery skills after a patient has mastered the six standard exercises. These exercises are designed to assist patients who find visualization hard. The exercise sequence is arranged in increasing difficulty. The patient should follow the established order and should only advance after mastering an exercise. These exercises include:

  1. Spontaneous experience of colors
  2. Experience of selected colors
  3. Visualization of concrete objects
  4. Visualization of abstract objects
  5. Experience of a selected state of feeling
  6. Visualization of other persons
  7. Answers from the unconscious

A patient's visualization skills determine his or her rate of mastery. Moderate-ability patients may master all seven exercises in one or two sessions; others may require month per exercise (Lichstein, 1988).



Edmund Jacobson (1888-1973) received training as both a research physiologist and physician. Jacobson started using progressive relaxation in clinical cases about 1918 and published case histories in two 1920s articles (Jacobson, 1920, 1924). His greatest research productivity was between 1925 and 1940 when he studied the psychophysiology of progressive relaxation. During this period, he published the class text, Progressive relaxation (Jacobson, 1920) and You must relax (Jacobson, 1934).




        


Progressive relaxation was not widely used until Wolpe incorporated an abbreviated version of this procedure in systematic desensitization. Wolpe designed this behavior therapy procedure to treat phobic disorders. Wolpe (1958) and Goldfried (1971) both condensed Jacobson's standard procedure, which covered 50 muscle groups in 3-6 months of training. Wolpe's version trains about 15 muscle groups in 20 minutes (Lichstein, 1988).

Jacobson observed that patients maintain tension not required to perform a task (clenching teeth when writing a check) and that they are often unaware of that tension. He also discovered using electromyography that muscles often do not relax even when we lie down. Jacobson theorized that unconscious muscle bracing wastes energy, disrupts performance, and produces stress disorders (Jacobson, 1929). He also asserted that anxiety is correlated with muscle tension so that muscle relaxation reduces anxiety.

Research has shown that the relationship between muscle tension and stress disorders and anxiety is complex. Muscle tension may be a byproduct of an underlying disorder instead of the cause (Suter, 1984).

Jacobson's original procedure trained patients to relax 2 or 3 muscle groups each session until 50 groups were trained. Several sessions might focus on a single difficult muscle group before moving to successive groups. Jacobson's approach was time-intensive, requiring 50-60 sessions in the clinic and 1-2 daily one-hour practice sessions (Suter, 1984). Studies do not show a difference in outcome between Jacobson's original progressive relaxation protocol and modern condensed versions (Snow, 1977; Turner, 1978).

In contrast to current protocols in which patients tense and relax muscle groups, Jacobson only asked patients to produce minimal muscle tension early in training. Jacobson's patients mainly employed passive relaxation in which they simply focused on muscle sensations (Lichstein, 1988). For Jacobson, the objectives of progressive relaxation were development of muscle sense (awareness of muscle tension) and reduction of useless residual tension. After they eliminated residual tension, Jacobson encouraged his patients to develop the skill of differential relaxation, inhibition of unneeded muscle groups during routine activities.

Popular progressive relaxation protocols are no more standardized than their autogenic counterparts. Important procedural differences include:

  1. Whether muscles should be tensed or passively observed
  2. The number of times a muscle should be tensed
  3. The muscle groups to be trained
  4. The sequence of muscle group training
  5. Experience of a selected state of feeling
  6. Provision of verbal relaxation suggestions

As in autogenic exercises, patients may be trained individually or in groups. Also, the patient reclines or sits in a slightly darkened room with eyes closed. For a conventional protocol covering 16 muscle groups, a patient might tense for 7 seconds and relax for 45 seconds. The training sequence may be revised to accommodate a patient's needs. The therapist should question each patient before training to exclude already relaxed muscle groups and identify problem groups. Spastic or strained muscle groups may be skipped or the tension level may be passively observed (without additional tensing). The therapist may repeat the tense-relax cycle two or three times for difficult muscle groups (Lichstein, 1988).



Mental imagery can produce harmful or beneficial physiological changes, as suggested by Kenneth Pelletier's (1977) classic text, Mind as healer, Mind as slayer. Negative imagery can increase blood pressure, heart rate, muscle contraction, and pain. Visualization, in which a patient generates mental imagery, is a common element in interventions ranging from autogenic training to behavior therapy. The vivid images created during visualization can aid relaxation (standard autogenic exercises), prepare an individual to cope with stressful situations (mental rehearsal), and reduce symptoms as diverse as anxiety, back pain, headache, hypertension, and ulcer. There are marked individual differences in visualization ability and this capacity may overlap with hypnotic susceptibility. High-hypnotizable individuals who are powerful visualizers may achieve the best results using this strategy (Moss, 2004).



Transcendental meditation (TM) is a form of mantric meditation, developed by Maharishi Mahesh Yogi, in which an individual repeats Sanskrit syllables that have been assigned by an instructor based on age or personality.




     


Benson (1975) identified four components that TM shares with other deep relaxation procedures: a "quiet environment, mental device, passive attitude, and comfortable position" (pp. 112-113). Benson developed a secularized version of TM that incorporates these four elements and recommended that patients practice 1-2 times daily for 10-20 minutes. Early TM hypertension studies lacked control groups, involved single-group pretest-posttest designs, and yielded mixed results. Controlled trials of Benson's meditative procedure have not demonstrated clinically-significant blood pressure changes in hypertensive individuals (Lichstein, 1988).




         




Clinically standardized meditation (CSM) is a systematic secular meditative procedure that incorporates components from meditative techniques like TM. A meditator selects or creates a mantra (soothing sound), repeats it aloud with the instructor and then alone, whispers it, and then mentally (silently) repeats it with eyes closed. Both the instructor and trainee meditate seated with eyes closed for 10 minutes after which the trainee gradually returns to normal consciousness over 1-2 minutes. The instructor answers the student's questions about using this meditative technique and then instructs the student to meditate alone for a specified time period (10-20 minutes) after the instructor leaves the room. The student completes a questionnaire following meditation which is reviewed with the instructor and then the instructor teaches the next week's meditative exercise and reviews how to control negative side effects. Meditation practice is prescribed twice daily for about 20 minutes and may be shortened if the student experiences negative side effects (Lehrer & Carrington, 2003).



The American Psychological Association's Division of Psychological Hypnosis cautions that hypnosis "is not a type of therapy" but instead "a procedure that can be used to facilitate therapy" (Kirsch et al., 1999, p. 3). Instead of hypnotherapy, which connotes an independent treatment like cognitive behavior therapy (CBT), we should use the term "hypnotically-assisted psychotherapy" (Moss, 2004, p. 37).

Researchers disagree on the clinical efficacy and nature of hypnosis. Joseph Barber (1996) views hypnosis as an altered state of consciousness and contends that analgesia involves negative hallucination where normal perception is suppressed. Hilgard (1978) hypothesized that the process of hypnotic induction produces an altered state of consciousness in susceptible individuals that allows them to produce physiological changes. Theodore X. Barber (1982) conceptualizes hypnosis as a trait or relatively permanent predisposition to respond to suggestion and believes that the hypnotic process is not simply relaxation. He challenges the need for hypnotic induction (entry into a trancelike state) and argues that individuals will respond equally well to suggestions without a trance state. Most hypnotherapists agree that all hypnotic procedures share the common process of self-hypnosis (self-suggestion).

Hypnotic suggestibility (responsiveness to suggestion) as measured by instruments like the Stanford Hypnotic Susceptibility Scales appears to be distributed along a bell-shaped curve. The Stanford scales measure hypnotizability from 0 (no suggestibility) to 12 (high suggestibility). About 95% of the population scores at least 1 and most score been 5 and 7 (Nash, 2001). Therapists should measure patient suggestibility to determine whether to use a hypnotic procedure.

Hypnotic treatment is more effective than placebo in producing analgesia (pain relief) in highly suggestible patients (Jacobs, Kurtz, & Strube, 1995). However, patients with low suggestibility respond to analgesic suggestions at the same rate as they respond to placebos (Miller, Barabasz, & Barabasz, 1991). While researchers disagree about the mechanisms responsible for hypnotic analgesia, there is convincing clinical evidence that hypnosis can effectively treat both acute and chronic pain. A meta-analysis (Montgomery, DuHamel, & Redd, 2000) revealed that analgesic suggestions reduced pain in about 75% of subjects and comparably reduced clinical and experimental pain. Hypnotic procedures have been successfully used in burn pain, cancer pain in children, childbirth discomfort, dental pain, headache, low back pain, pain from sickle cell disease, and surgical pain. These techniques are underutilized due to misconceptions such as "hypnotized patients are unaware of their surroundings" (Brannon & Feist, 2004).

Hypnosis can be effectively combined with biofeedback/neurotherapy (Moss, 2004). Wickramasekera (2003) proposes different roles for biofeedback with highly-hypnotizable and medium-to-low hypnotizable individuals. He argues that highly-hypnotizable patients will best respond to hypnotic procedures and that biofeedback can help illustrate the connection between mind and body. In contrast, medium-to-low hypnotizable patients are often better candidates for more intensive biofeedback training, which may increase their hypnotic susceptibility.



No one knows the average quality of instruction in autogenic training and progressive relaxation when it is delivered as part of biofeedback training. When deep relaxation training is ineffective, this is probably due to at least one of the following problems:

  1. Therapist inexperience: the therapist had no formal training in one or both procedure(s)
  2. Inadequate training time: total time may be less than one hour for both procedures
  3. Prerecorded relaxation instructions: the pace cannot be adjusted to the patient's progress, preferences, and relaxation experiences
  4. Patient and therapist misconceptions about relaxation training: one or both may view training sessions as treatments rather than opportunities to learn relaxation skills



Stroebel developed the Quieting Response (QR) abbreviated relaxation exercise to counteract the fight-or-flight response. The four stages of the six-second fight-or-flight response are:

  1. Sympathetic nervous system arousal and focus on perceived threat
  2. Tense skeletal muscles, especially those in the face
  3. Hold your breath or pant
  4. Clench your jaws and constrict blood flow to your hands and feet







The six-second Quieting Response consists of four corrective stages:

  1. Focus on a stress cue (anxiety, change in breathing, frustration, or tension)
  2. Smile inwardly, including the eyes and mouth. Suggest to yourself: "Alert amused mind, calm body"
  3. Take an easy deep breath
  4. Let your jaw, tongue, and shoulders go limp as you exhale, and feel the flow of warmth down your body to your toes

Stroebel recommended that patients learn the Quieting Response in eight learning sessions scheduled about one week apart. The activities for each session were described in QR: The quieting reflex (Stroebel, 1982). He advised patients to initially practice the Quieting Response whenever they experience annoyances, as many as 50-100 times a day, and cautioned that it would take about six months for the Quieting Response to become automatic. While 100 times a day practice might seem excessive, it only involves 600 seconds or 10 minutes per day. Stroebel estimated that 80% of patients practicing the Quieting Response achieve this level of proficiency and continue using this technique after two years.

Stroebel explained the 80% compliance rate as due to the minimal time commitment required by the Quieting Response and the fact that patients do not have to disrupt daily activities to perform this six-second exercise. "They controlled the technique; the technique did not control them." (p. 82)




        




The professional can benefit from recorded relaxation exercises because they conserve training time, increase flexibility in terms of when and where the patient can practice, reduce the professional's burnout from repeated presentation of relaxation scripts, and standardize relaxation script language.

The practical benefits of recorded exercises include lower cost for therapy due to fewer sessions, the ability to schedule more patients, increased therapist credibility and patient enthusiasm as the exercises produce desired results, and shorter learning time as the patient completes more practice sessions.

From the patient's perspective, recorded exercises are desirable because they increase comprehension and retention, improve patient satisfaction, motivation, and compliance, provide more consistent instructions and standardize exercises, provide information that family members can understand, allow for practice with fewer distractions, and help the patient learn to pace relaxation exercises.

Schwartz makes several useful recommendations when recording relaxation instruction:

The AAPB encourages therapists to teach patients to record exercises in their own voices to increase patient skill and promote an internal locus of control. We want patients to perceive relaxation as a skill they can refine through practice. We don't want them to use recordings as substitutes for medication. In Ian Wickramasekera' s language. we want to promote "skills, not pills."



Research suggests that live instructions may be more effective than taped instructions. A therapist's physical presence produces different demand characteristic that may affect motivation--than a recording. The advantage of live instructions may also be due to the therapist's ability to adjust relaxation training to the patient's immediate experience and progress. For example, the therapist might suggest changes in sitting position or reduced effort during practice, observing psychophysiological measurements. Finally, the therapist can adjust pacing to an individual patient's performance.



Striefel (2004) cautions that biofeedback-assisted relaxation can produce negative reactions in any patient. While Budzynski (1994) advises that a thorough psychological history can identify patients with elevated risk of negative reaction, therapists must be prepared to respond to problems in patients without DSM-IV disorders. Schwartz and Schwartz (1995) believe that while significant severe negative reactions are rare, mild-to-moderate negative reactions can interfere with therapy and possibly end promising therapy, and reduce patient practice of assigned relaxation exercises.




       


When patients experience negative reactions like anxiety, muscle spasms and tics, and increased sympathetic activation, the biofeedback therapist can reassure the patient and adjust biofeedback therapy and home practice assignments. In the rare case of a severe negative reaction that exceeds the therapist’s expertise, he or she may need to consult with or obtain supervision from a more experienced professional or refer the patient to another clinician. Nash and colleagues (2001) contend that biofeedback therapists who are not licensed mental health professionals should not treat patients with a DSM-IV diagnosis without licensed supervision.

Deep relaxation procedures like autogenic training and progressive relaxation can result in negative experiences. A survey by Edinger and Jacobsen (1982) of 116 psychologists who used a relaxation procedure revealed that relaxation side effects are common:

Schultz and Luthe (1969) found that intrusive thoughts (69%) and anxiety (40%) were the most likely complaints of their autogenic patients. Patients learning deep relaxation often experience unexpected sensations.

Luthe (1962) identified 53 categories of side effects, called autogenic discharges, in 100 novice patients:

The negative reactions experienced during relaxation training can be grouped as follows:

  1. Musculoskeletal: tics, cramps, myoclonic jerks, spasms, and restlessness
  2. Disturbing sensory experiences: heaviness, warmth, cooling, depersonalization, misperceived body size, floating, and other sensory experiences
  3. Sympathetic nervous system activity: increased heart rate and electrodermal activity
  4. Cognitive-affective, emotional, and intrusive thoughts: sadness, anger, depression, disturbing thoughts, intrusive thoughts, mind wandering, tearfulness, increased anxiety, and fears like losing control
  5. Other negative side effects: hypotensive reactions, headache, sexual arousal, and psychotic symptoms

Negative reactions can interfere with or lead to the termination of relaxation training. Based on 17,542 patients seen by 116 clinicians, 3.5% experienced negative reactions that interfered with relaxation therapy and 3.8% experienced negative side effects that confounded therapy, requiring discontinuation of relaxation. In all, 7.3% experienced significant negative reactions.

An experienced therapist can reduce patient distress through reassurance, positive reframing (reconceptualizing) these experiences, and slowing the pace of training. These sensations often fade in weeks or become more pleasant (Lichstein, 1988).



Relaxation-induced anxiety (RIA) is increased anxiety during relaxation training: increased perspiration, shivering, trembling, pounding heart, and rapid breathing (Carrington, 1977). Relaxation training, and not biofeedback, appears to be the cause of the negative reactions.

RIA is best explained by:


Schwartz (1995) has recommended strategies to control RIA:

  1. Provide understandable and realistic patient education
  2. Select types of relaxation and biofeedback less likely to produce RIA
  3. Help patient anticipate sensations and thoughts
  4. Reframe relaxation as increased control
  5. Encourage use of less effort
  6. Switch to a different type of relaxation since RIA is not likely with two different types of training

Schwartz has cataloged common problems encountered during relaxation training:

He has recommended practical strategies for dealing with these problems:


While extremely uncommon, biofeedback-assisted relaxation training may reduce a patient’s medication requirement for specific medical disorders (e.g., asthma, diabetes mellitus, epilepsy, glaucoma, hypertension, and hypothyroidism). To address this problem, the patient’s healthcare provider and biofeedback therapist should know which drugs the patient routinely takes, discuss this issue before initiating biofeedback training, and ensure adequate monitoring of the patient’s medical condition. The biofeedback therapist should obtain the patient’s agreement to consult with the healthcare provider before reducing dosage or discontinuing a drug (Schwartz, 2003).



Acute and chronic stress disorders may deplete B-complex vitamins (50-100 mg/day), calcium (1,000 mg/day), and magnesium (400 mg/day), requiring their increased intake through dietary sources or supplements (University of Maryland Medical Center Complementary Medicine Program, 2005). Patients should avoid or minimize consumption of caffeine, due to its activation of the sympathetic nervous system and potential to disrupt sleep, and alcohol, due to the risk of abuse and physical dependency, interaction with prescription medication, and potential interference with sleep.

Bhat (1995) recommends a high-fiber starch-based vegetarian diet that is low in saturated fat and salt, and eaten 6 times a day to closely regulate insulin and mood. He also recommends intake of vitamin A (beta carotene), vitamin C, and vitamin E as antioxidants to counter inflammatory processes.



Physical exercise is crucial to psychophysiological health. While an hour of exercise per day may be optimal, physicians often recommend at least 30 minutes of moderate-intensity activity (brisk walking) at least 5 days per week or 20 minutes of high-intensity activity (running) at least 3 days a week. Physical exercise reduces mortality, increases life expectancy an average of 2 years, and is associated with lower risk of specific cancers (breast, colon, lung, prostate, and rectum), Type 2 diabetes, osteoporosis (decreased bone density), hypertension, cardiovascular disease, and stroke. Moderate physical activity can increase basal metabolism and help patients control their weight, lower low-density lipoproteins (LDL), increase protective high-density lipoproteins (HDL), and possibly lower triglycerides.

Greater levels of exercise are associated with reduced state and trait anxiety, mild-to-moderate depression, sleep disorders (including nightmares), and stress, and increased self-esteem (Brannon & Feist, 2004; Gurung, 2006).

Studies with mice and rats have shown that exercise increases expression of brain-derived neurotrophic factor (BNDF), which increases the number of new neurons and neural connectivity, and aids learning to navigate the Morris water maze (Gomez-Pinilla et al., 2001; Van Praag et al., 1999).

In mice predisposed to accumulate beta-amyloid plaques and develop Alzheimer's-like symptoms, mice with running wheels (runners) performed better in the Morris water maze and showed half the beta-amyloid buildup of sedentary mice (Adlard et al., 2005; Berchtold et al., 2005).

Rats who exercised daily on a treadmill for one week or were sedentary were subsequently injected with 6-hydroxy-dopamine, which selectively destroys dopaminergic (DA) neurons in the nigrostriatal pathway. Parkinson's disease also involves loss of DA neurons in this pathway. The rats who exercised lost fewer DA neurons than their sedentary counterparts. Exercise may have increased expression of another neurotrophic factor, glial cell-derived neurotrophic factor (Zigmond & Cotman, 2005).

MacDonald studied the effects of exercise on patients who had been paralyzed for an average of 5 years. Twenty-four patients were assigned to exercise three times a week with bikes equipped with electrodes to stimulate pedaling and 24 patients were assigned to stretching. At the end of 2 years, 40 percent of the exercisers and only 4 percent of the stretchers increased motor function (McDonald et al., 2002).

A 6-year study of 1,740 participants over 65 associated moderate exercise with reduced incidence in dementia (Brownlee, 2006).







Now that you have completed this module, think about how and why you use relaxation procedures with your patients. What do you do to motivate your patients to practice these exercises?




Achterberg, J. (1994). Rituals of healing: Using imagery for health and wellness. New York: Bantam.

Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's Disease. The Journal of Neuroscience, 25(17), 4217-4221.

Barber, J. (1996). A brief introduction to hypnotic analgesia. In J. Barber (ed.), Hypnosis and suggestion in the treatment of pain: A clinical guide. New York: Norton.

Barber, T. X. (1982). Hypnosuggestive procedures in the treatment of clinical pain: Implications for theories of hypnosis and suggestive therapy. In T. Millon, C. J. Green, & R. B. Meagher (Eds), Handbook of clinical health psychology. New York: Plenum.

Benson, H. (1975). The relaxation response. New York: Morrow.

Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P., & Cotman, C. W. (2005). Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience, 133, 853-861.

Bhat, N. (1995). How to reverse and prevent heart disease and cancer: Practical tools based on breakthrough research. Burlingame, CA: New Editions Publishing.

Brannon, L., & Feist, J. (2004). Health psychology (5th ed.). Belmont, CA: Wadsworth Publishing Company.

Budzynski, T. (1994). The new frontier. Megabrain Report, 3, 58-65.

Carrington, P. (1999). Clinically standardized meditation (CSM) instructor's kit. Kendall Park, NJ: Pace Educational Systems.

Gomez-Pinilla, F., Ying, Z., Opazo, P., Roy, R. R., & Edgerton, V. R. (2001). Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci, 13, 1078-84.

Gurung, R. A. R. (2006). Healthy psychology: A cultural approach. Belmont, CA: Thompson Wadsworth.

Hilgard, E. R. (1978). Hypnosis and pain. in R. A. Sternbach (Ed.). The psychology of pain. New York: Raven Press.

Jacobs, A. L., Kurtz, R. M., & Strube, M. J. (1995). Hypnotic analgesia, expectancy effects, and choice of a design: A reexamination. International Journal of Clinical and Experimental Hypnosis, 43, 45-68.

Lehrer, P., & Carrington, P. (2003). Progressive relaxation, autogenic training, and meditation. In D. Moss, A. McGrady, T. C. Davies, & I. Wickramasekera (Eds.), Handbook of mind-body medicine for primary care. Thousand Oaks: Sage Publications.

Lichstein, K. L. (1988). Clinical relaxation strategies. New York: John Wiley & Sons.

Linden, W. (1990). Autogenic training: A clinical guide. New York: The Guilford Press.

McDonald, J. W. (2004). Repairing the damaged spinal cord: From stem cells to activity-based restoration therapies. Clinical Neurosurgery, 51, 207-227.

McDonald, J. W., et al. (2002). Late recovery following spinal cord injury. Journal of Neurosurgery, 97, 252-265.

Miller, M. F., Barabasz, A. F., & Barabasz, M. (1991). Effects of active alert and relaxation hypnotic inductions on cold pressor pain. Journal of Abnormal Psychology, 100, 223-226.

Montgomery, G. H., DuHamel, K. N., & Redd, W. H. (2000). A meta-analysis of hypnotically induced analgesia: How effective is hypnosis? International Journal of Clinical and Experimental Hypnosis, 48, 138-153.

Moss, D. (2004). Adjunctive interventions and assessment. In A. Crider & D. D. Montgomery (Eds.), Introduction to biofeedback. Wheat Ridge: AAPB.

Nash, J., Stockdale, S., & Hoffman, D. A. (2001). Question: Have you seen any negative effects associated with EEG neurofeedback? Journal of Neurofeedback, 4, 65-69.

Nash, M. R. (2001, July). The truth and the hype of hypnosis. Scientific American, 285, 47-55.

Pelletier, K. R. (1977). Mind as healer, Mind as slayer. New York: Dell Publishing Company, Incorporated.

Schwartz, M. S., & Schwartz, N. M. (1995). Problems with relaxation and biofeedback: Assisted relaxation and guidelines for management. In M. S. Schwartz (Ed.). Biofeedback: A practitioner's guide (2nd ed.). New York: The Guilford Press.

Schwartz, M. S. (2003). Intake decisions and preparation of patients for therapy. In M. S. Schwartz and F. Andrasik (Eds.). Biofeedback: A practitioner’s guide (3rd ed.). New York: The Guilford Press.

Striefel, S. (2004). Module 8: Professional conduct. In A. Crider and D. D. Montgomery (Eds.). Introduction to biofeedback: An AAPB independent study program. Wheat Ridge: Association for Applied Psychophysiology and Biofeedback.

Van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA, 96, 13427–13431.

Wickramasekera, I. (2003). The high risk model of threat perception and the Trojan Horse role induction: Somatization and psychophysiological disease. In D. Moss, A. McGrady, T. C. Davies, & I. Wickramasekera (Eds.), Handbook of mind-body medicine for primary care. Thousand Oaks: Sage Publications.

Zigmond, M. J., & Cotman, C. W. (2005). Exercise and central nervous system disease. Annual Meeting of the Society for Neuroscience: Washington, D.C.